太阳成集团tyc4633 通知公告
教师风采

李劲锋


李劲锋

助理教授,硕士生导师

微波与太赫兹技术研究所

电子邮件:jinfengcambridge@bit.edu.cn

办公地点:4号教学楼212(右)




所在学科

电子科学与技术(微波与太赫兹技术),集成电路科学与工程

研究方向

液晶毫米波相控阵技术,核反应堆热工水力传感测控

主讲课程《赋能6G:液晶毫米波技术前沿》(评教得分:97.079),《ECE学科前沿与进展》《电子科学与技术学科前沿》

个人简历

2022/12-至今 澳门太阳游戏城app集成电子/前沿交叉学院,助理教授

2021/03-2022/11 英国威尔士未来核能研究所,Research Associate

2019/05-2022/11 英国帝国理工,Visiting Researcher

2019/03-2021/09 英国南安普顿大学,Research Fellow

2018/06-2018/08 英国巴克莱银行信息安全总部,Emerging Technologist

2014/10-2019/04 英国剑桥大学 液晶毫米波电子工程,博士

2013/09-2014/10 英国剑桥大学 核能工程,硕士

2012/09-2013/07 英国伯明翰大学 电子与电气工程,学士

2009/09-2013/06 华中科技大学 电气工程及其自动化,学士

代表性论著

[1] J. Li and D. Chu, “Liquid crystal-based enclosed coplanar waveguide phase shifter for 54–66 GHz applications,” Crystals, vol. 9, 12, 650, December 2019.

[2] A. Yontem, J. Li, and D. Chu, “Imaging through a projection screen using bi-stable switchable diffusive photon sieves,” Optics Express, vol. 26, pp. 10162–10170, April 2018.

[3] J. Li, “Rethinking Liquid Crystal Tunable Phase Shifter Design with Inverted Microstrip Lines at 1–67 GHz by Dissipative Loss Analysis,” Electronics, vol. 12, 2, 421, January 2023.

[4] J. Li, “All-optically controlled microwave analog phase shifter with insertion losses balancing,” Engineering Letters, vol. 28, no. 3, pp. 663–667, 2020.

[5] J. Li, “Challenges and opportunities for nematic liquid crystals in radio frequency and beyond,” Crystals, vol. 12, 5, 632, April 2022.

[6] J. Li, “Tunability Dependence of All-Optical Liquid Crystal Delay Line on Laser Polarization and Incidence Angle,” Photonics Lett. Pol., vol. 15, no. 4, pp. 51–53, Dec. 2023.

[7] J. Li and H. Li, “Modeling 0.3 THz Coaxial Single-Mode Phase Shifter Designs in Liquid Crystals with Constitutive Loss Quantifications,” Crystals, vol. 14, 4, 364, April 2024.

[8] J. Li and H. Li, “Symmetry Implications of a 60 GHz Inverted Microstrip Line Phase Shifter with Nematic Liquid Crystals in Diverse Packaging Boundary Conditions,” Symmetry, vol. 16, 7, 798, June 2024.

[9] J. Li and H. Li, “Susceptibility to Low-Frequency Breakdown in Full-Wave Models of Liquid Crystal-Coaxially-Filled Noise-Shielded Analog Phase Shifters,” Electronics, vol. 13, 23, 4792, December 2024. (入选Feature Papers in Circuit and Signal Processing)

[10] J. Li and H. Li, “Assessing Vulnerabilities in Line Length Parameterization and the Per-Unit-Length Paradigm for Phase Modulation and Figure-of-Merit Evaluation in 60 GHz Liquid Crystal Phase Shifters,” Symmetry, vol. 16, 10, 1261, September 2024. (入选Feature Papers in Section "Engineering and Materials" 2024)

[11] J. Li, Y. Seki, K. V. Rajan, M. A. Ayu, A. H. Muhendra, S. A. Thabit, K. Kyritsis, N. Spatiotis, I. Perikos, and M. Paraskevas, "Advances in Sentiment Analysis - Techniques, Applications, and Challenges,” Book Editor: Jinfeng Li. IntechOpen, ISBN: 978-0-85014-061-3, Print ISBN: 978-0-85014-060-6, ISSN: 2633-1403. January 2024.

[12] J. Li and H. Li, “Liquid Crystal-Filled 60 GHz Coaxially Structured Phase Shifter Design and Simulation with Enhanced Figure of Merit by Novel Permittivity-Dependent Impedance Matching," Electronics, vol. 13, no. 3, 626, February 2024.

[13] J. Li, “Taking Flow Characterization to New Heights by Fiber Bragg Gratings Array,” Energies, vol. 16, 10, 4218, May 2023.

[14] J. Li, “From Liquid Crystal on Silicon and Liquid Crystal Reflectarray to Reconfigurable Intelligent Surfaces for Post-5G Networks,” Applied Sciences, vol. 13, 13, 7407, June 2023.

[15] L. Cai, H. Xu, J. Li, and D. Chu, “High figure-of-merit compact phase shifters based on liquid crystal material for 1–10 GHz applications,” Jpn. J. Appl. Phys., vol. 56, 011701, November 2017.

[16] J. Li, “Millimetre-wave beam steering with analog-resolution and minimised distortion based on liquid crystals tunable delay lines with enhanced signal-to-noise ratios,” Proc. SPIE, Millimetre Wave and Terahertz Sensors and Technology XIII, vol. 11541, 115410H, September 2020.

[17] J. Li, “Monte Carlo investigation of the UK’s first EPR nuclear reactor startup core using Serpent,” Energies, vol. 13, 19, 5168, October 2020.

[18] J. Li, “Will ‘Liquid-Crystal-Based Floating-Electrode-Free Coplanar Waveguide Phase Shifter With an Additional Liquid-Crystal Layer for 28-GHz Applications’ Work?” Engineering Letters, vol. 31, 2, pp. 820–824, 2023.

[19] J. Li, “Vulnerabilities mapping based on OWASP-SANS: a survey for static application security testing (SAST)”, Annals of Emerging Technologies in Computing, vol. 4, no. 3, pp. 1–8, July 2020. (获AETiC Highly Cited Article Award)

[20] H. Plows, J. Li, M. Dahlfors, and M. Margulis, “Flow Characterisation Using Fibre Bragg Gratings and Their Potential Use in Nuclear Thermal Hydraulics Experiments,” Journal of Nuclear Engineering, vol. 4, no. 4, pp. 668–690, October 2023.

[21] J. Li and H. Li, “Frequency Ripples Reduction in Differential Delay Time of Liquid Crystals Coaxial Delay Lines,” IEEE AP-S/URSI 2024, Florence, Italy, 2024, pp. 154–155. (IEEE天线与传播学会旗舰会议)

[22] J. Li, “Rethinking figure-of-merits of liquid crystals shielded coplanar waveguide phase shifters at 60 GHz,” J, vol. 4, pp. 444–451, August 2021.

[23] J. Li, “An efficient mixed-signal dielectric-partitioning model of liquid crystals based shielded coplanar waveguide for electronically reconfigurable delay lines design,” Proc. SPIE, Integrated Optics: Design, Devices, Systems and Applications VI, vol. 11775, 1177519, April 2021.

[24] J. Li, “Performance limits of 433 MHz quarter-wave monopole antennas due to grounding dimension and conductivity,” Annals of Emerging Technologies in Computing, vol. 6, no. 3, pp. 1–10, July 2022.

[25] J. Li, “Low-loss tunable dielectrics for millimeter-wave phase shifter: from material modelling to device prototyping,” IOP Conference Series: Materials Science and Engineering, vol. 892, 012057, 2020.

[26] J. Li, “Modelling nuclear fuel assembly with thermal-hydraulic feedback and burnup using WIMS-PANTHER-Serpent,” Journal of Physics: Conference Series, vol. 1603, 012012, 2020.

[27] J. Li, “Towards 76-81 GHz scalable phase shifting by folded dual-strip shielded coplanar waveguide with liquid crystals,” Annals of Emerging Technologies in Computing, vol. 5, no. 4, pp. 14–22, October 2021.

[28] J. Li, “60 GHz 0-360˚ passive analog delay line in liquid crystal technology based on a novel conductor-backed fully-enclosed coplanar waveguide,” 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, USA, 2022, pp. 1841–1846. (电子封装领域国际顶会)

[29] J. Li, H. Xu, and D. Chu, “Design of liquid crystal based coplanar waveguide tunable phase shifter with no floating electrodes for 60–90 GHz applications,” 46th European Microwave Conference (EuMC), London, 2016, pp. 1047–1050.

[30] J. Li, “Wideband PCB-to-connectors impedance adapters for liquid crystal-based low-loss phase shifters,” 50th European Microwave Conference (EuMC), Utrecht, 2021, pp. 546–549.

[31] J. Li, “Optically steerable phased array enabling technology based on mesogenic azobenzene liquid crystals for starlink towards 6G,” IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, 2020, pp. 345–347.

[32] J. Li, “Managing 60 GHz field peaking of an liquid crystal enclosed coplanar waveguide by core edge shaping,” IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, 2020, pp. 403–405.

[33] J. Li, “Figure-of-merits mismatch in liquid crystals mmWave phase shifters,” 46th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Chengdu, 2021. pp. 1–2.

[34] J. Li, “Bias tees integrated liquid crystals inverted microstrip phase shifter for phased array feeds,” 21st IEEE International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, 2020, pp. 1–5.

[35] J. Li, “60 GHz optimised nickel-free gold-plated enclosed coplanar waveguide liquid crystal phase shifter,” IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IEEE MTT-S IMWS-AMP), Suzhou, 2020, pp. 1–3.

[36] L. Cai, H. Xu, J. Li, and D. Chu, “High FoM liquid crystal based microstrip phase shifter for phased array antennas,” IEEE 21st International Symposium on Antennas and Propagation (ISAP), Okinawa, 2016, pp. 402–403.

[37] J. Li, “79 GHz meandering enclosed-coplanar variable delay lines in liquid crystals encapsulated within independent and shared cavities,” IEEE 27th International Symposium on Antennas and Propagation (ISAP), Sydney, Australia, 2022, pp. 457–458. (担任分会主席)

[38] J. Li, “Design and control optimisation of a novel bypass-embedded multilevel multicell inverter for hybrid electric vehicle drives,” IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Dubrovnik, 2020, pp. 382–385.

[39] J. Li, “Hybrid propulsion motor drives model based on multi-level inverters with optimised fuel economy,” IEEE Vehicular Power and Propulsion Conference (IEEE VPPC), Gijón, 2020, pp. 1–5. (电机驱动领域顶会)

[40] J. Li and X. Guo, “COVID-19 contact-tracing apps: a survey on the global deployment and challenges,” arXiv preprint arXiv:2005.03599, 2020. (被美国国家科学院院刊PNAS引用, 并受到MIT Technology Review采访邀请)

[41] J. Li, “Novel partially-shielded coplanar waveguide with metasurfaces for liquid crystals tunable delay lines beyond 67 GHz,” 2022 IEEE Conference on Antenna Measurements & Applications (IEEE CAMA), Guangzhou, China, 2022, pp. 1–4.

[42] J. Li, “Optically inspired cryptography and cryptanalysis: a survey and research directions,” Emerging Technologies in Computing, vol. 332, LNICST, Springer, 2020, pp. 98–110.

[43] J. Li, “Machine learning and digital twinning enabled liquid crystals mm-wave reconfigurable devices design and systems operation,” 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IEEE MTT-S IMWS-AMP), Guangzhou, China, April 2023, pp. 1–3.

[44] J. Li and H. Li, “Navigating Aspect Ratio Effects in Response Time Challenges of Liquid Crystal Coaxial Phase Shifters for Next-Generation mmW Communications,” IEEE 11th International Conference on Wireless Networks and Mobile Communications (WINCOM), Leeds, United Kingdom, 2024, pp. 1–5.

[45] J. Li, “Demystifying Two-Dimensional Asymmetrical Grounding Impacts on Monopole Antennas at 433 MHz,” 9th IEEE International Conference on Microwaves, Communications, Antennas, Biomedical Engineering and Electronic Systems (IEEE COMCAS 2024), Tel Aviv, Israel, 2024, pp. 1–4.

[46] J. Li, “Dissipative Analysis of Liquid Crystal-loaded Passive Reconfigurable Transmission Line Components with Filled Vias at 60 GHz,” IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Winnipeg, Canada, August 2023, pp. 48–50.

[47] J. Li and H. Li, “Effective Dielectric Constant Benchmark of 60 GHz Liquid Crystal-Filled Coaxial Delay Line,” 2024 IEEE International Conference on Computational Electromagnetics (ICCEM), Nanjing, China, 2024, pp. 1–3. (计算电磁学领域国际旗舰会议)

[48] J. Khatry, J. Li, M. Margulis, M. Dahlfors, J. Corre, H. Prasser, “Light water reactor thermal hydraulics facility development in North Wales,” 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Brussels, Belgium, March 2022. (第十九届国际核反应堆热工水力大会)

[49] X. Guo and J. Li*, “A novel twitter sentiment analysis model with baseline correlation for financial market prediction with improved efficiency,” 2019 Sixth IEEE International Conference on Social Networks Analysis, Management and Security (SNAMS), Granada, Spain, 2019, pp. 472–477. (担任分会主席)

[50] H. Plows, M. Margulis, and J. Li, “3D Imaging of Phase Structures Using Fibre Bragg Grating Grid Sensors,” 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20), American Nuclear Society (ANS), Washington, D.C., August 2023, pp. 2944–2944. (第二十届国际核反应堆热工水力大会)

[51] J. Li and H. Li, “Computationally Sampling Surface and Volume Current Densities of Liquid Crystal Non-Planar Phase Shifters for Low-Loss 5G IoT and 6G AIoT,” 2024 IEEE International Conference on Omni-layer Intelligent Systems (IEEE COINS), London, UK, 2024, pp. 1–6. (担任分会主席)

[52] J. Li, “Roadmap of 6G Reconfigurable Intelligent Surfaces with Nematic Liquid Crystals: Fundamentals, State-of-the-Art, and Challenges,” IEEE/IFAC 10th International Conference on Control, Decision and Information Technologies (CoDIT 2024), Vallette, Malta, 2024, pp. 802–807. (担任分会主席)

[53] J. Li and H. Li, “Finite-element Adaptive Meshing Statistics of Liquid Crystal Coaxial Phase Shifters for mmW Electronics and THz Photonics Beyond Display: A Comparative Study,” Photonics Lett. Pol., vol. 16, no. 3, pp. 40–42, October 2024.

研究成果

剑桥大学信托学者,Cambridge Trust 奖学金获得者,英国工程技术协会IET Prize获得者,开拓了多种新型液晶电控/光控微波/毫米波移相器,第一作者发表SCI/EI论文50余篇,主编专著1部,获英国物理学会IOP以及IEEE会议最佳论文奖、2023 年计算新兴技术年鉴高被引文章奖。主持:国家自然科学基金青年科学基金项目,澳门太阳游戏城app科技创新计划等项目。曾重点深度参与:平方公里阵列射电望远镜(SKA)、英国工程和自然科学研究委员会(EPSRC)、英国科学与技术设施理事会(STFC)、英国劳氏 (LR) 、欧洲区域发展基金 (ERDF)、威尔士热工水力学开放获取研究设施 (THOR) 等国际研发项目。


荣获奖项

2009年荣获 华中科技大学科技创新标兵;

2013年荣获 英国工程技术协会IET Prize;

2013年荣获 英国伯明翰大学本科毕业论文最高奖AP Jarvis Undergraduate Prize,排名1;

2013年荣获 华中科技大学优秀毕业生;

2014年荣获 英国剑桥大学Trust奖学金;

2020年荣获 IEEE会议最佳论文奖;

2021年荣获 英国物理学会IOP会议最佳论文奖;

2023年荣获计算新兴技术年鉴高被引文章奖 AETiC Highly Cited Article Award 2023;

2023年入选国家级青年人才

2024年指导研究生荣获澳门太阳游戏城app校级优秀学生。


学术兼职

1. IEEE第27届天线与传播国际研讨会“新传输线/结构”分会主席 (Sydney, Australia)。

2. IEEE第15届国际微波毫米波技术会议“无源器件/电路”分会主席。

3. IEEE/IFAC 10th CoDIT 2024“云计算与无线系统”分会主席 (Valetta, Malta)。

4. IEEE SNAMS 2019 分会主席 (Granada, Spain)。

5. IEEE COINS 2024“电路、系统与设计自动化”分会主席 (London, UK)。

6. IEEE VCC 2024“通信系统与设备”分会主席。

7. 第五届全国太赫兹科学技术青年年会暨中国国际太赫兹青年论坛太赫兹探测及检测技术分论坛主席。

8. 中国通信学会高级会员。

9. 3个SCI期刊编委,Nature子刊、IEEE Transactions、Photonics Research、Optics Express等权威期刊审稿人。

10. 联合国教科文组织英国牛顿基金牛顿奖项目评审专家。

11. 英国国家卫生研究院基金结题报告评审专家。